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Abstract

A Chebyshev spectral co-location and divergence-free odeth
is adapted to solve the linearised Navier—Stokes (LNS)-equa
tions for time-periodic pipe flow. The method is spectral in
the pipe axis and azimuth, allowing for specific axial and az-
imuthal wave numbers. A Krylov subspace method is used to
find the leading (real-part) eigenvalues of the LNS flow evolu
tion over one oscillation period. We demonstrate the releea

to Floquet Theory and proceed to confirm the linear-stabilit
of these flows. The new method is compared against a previ-
ous stability study in pipe flows. Finally, the optimal energ
growth for periodic pipe flow is formulated in forward and ad-
joint variables. The growth problem is checked against an al
ternative time-stepper methodology. This investigateysithe
ground-work for a validation study of recently presenteeé¢h
dimensional linear instabilities in periodic pipe flow.

Introduction

The investigation of time-periodic pipe flows has received r
newed interest in the past decade. This may be attributed to a
increase in computational power, advances in spectraladeth
ology (to which the geometry is idealised), and the discpeér
new autonomous processes in shear flow [5]. Industrialseh
types of flows and their transitional properties are of caitin-
terest in cardio-related surgery where artificial composane

the largest contributor to blood degradation. Peristgitimp-

ing of delicate suspensions and non-Newtonian fluids ae als
of importance, where high shear rates can cause damagehto bot
the fluids and the pumping equipment.

It is known that steady laminar flow in pipes is stable to in-
finitesimal perturbations [13], while channels are asyripto
cally unstable aRe= 5772 for the axial wave-number.(2
[12]. Moderately careful experiments in pipe flow (Hagen-
Poiseuille) demonstrate a transitional Reynolds humbehef
order 2000- 3000. Most experimental observations in this area
are related to slug or puff structures, which arrive withréas-

ing frequency as system parameters of energy and Reynolds
number are monotonically increased. Similarly, pistonedr
experiments for oscillatory flows in pipes have revealedra-nu
ber of transitional stages, each characterised by maaie-sc
fluid properties. Turbulence associated with these periodi
flows comes in bursts often in the deceleration, or reverse-fl
component of the cycle is linked to the governing Reynolds
number.

The initial numerical understanding for periodic pipe flowsv
laid-down by Yang and Yih [17]. Addressing the axisymmet-
ric stability problem (2D) it was found that the flow tended to
wards neutral stability in the asymptote of Reynolds number
and monotonically so for increasing frequency. Later axisy
metric work by [6] using long-wave Orr—Sommerfeld bases
confirmed the known linear stability of periodic pipe flow. In
2009 Nebauer and Blackburn [11] (NB09) revisited the pnoble
to extend the linear result to non-axisymmetric (3D) solosi

It was found that an increase in the three-dimensionalityh(@
azimuthal direction) resulted in an increase in the flowititgb

for all Reynolds numbers studied. The solution space erignd
that of Yang and Yih in both Reynolds number and frequency
parameter. This extension confirmed the prediction of Yarty a
Yih; that the flow is asymptotically stable to all perturlosus.

The stability of oscillatory pipe flow is closely related toet
stability of oscillatory Stokes layers, and of oscillatarlyan-
nel flow. Instabilities in these flows were recorded by [3,id];
the latter, axisymmetric instability of oscillatory pip@fl was
also reported. Further, [15] recently reported non-axiswatric
instabilities of oscillatory pipe flow. These findings have
prompted us to implement a different numerical approacheo t
study of instability in oscillatory pipe flow than was preusly
used in NB09. The present work focuses on the development
and validation of a fully spectral (Chebyshev—Fourier-a
LNS solver and its use in studying Floquet instability ofibsc
latory pipe flow using time—stepper type methods [16].

This work focuses on the application of a LNS solver. The
solver is based on the work of [10] and uses a set of divergence
free (DF) basis as the trial functions in a spectral solutibime
time-stepper LNS solver is coupled to a Krylov—Arnoldi &er
tive method for Floquet stability analysis.

Problem Geometry and Parameters

We start with a regular, rigid cylinder of radiis(diameterD)
and lengtH. Itis completely filled with a laminar, viscid and in-
compressible fluid of density and viscosityw. The governing
equation for this system is the Navier—Stokes partial chffiéial
system;

du=—u-Ou—DOp+vD2u, O-u=0 (1)
Here p is the kinematic or modified pressure ane-y{u, v, w},
the primitive velocities in the radial, azimuthal and axiab, z)
directions. Under a constant pressure gradient and afiplica
of the no-slip wall boundary condition, the system (1) has an

analytical solution:
r\2
{L(E{) } v8,z dp=0.

The pressure gradiefitg is real andd, represents the partial
derivative with respect to. A closed-form solution of (1) for
time-periodic pipe flows, under a periodic pressure gragdezam
be obtained as analytical Bessel-Fourier solutions, finkt p
lished by [14]:
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is a dimensionless frequency parameter known as the Womers-
ley number,n is a frequency harmonicly is the zeroth-order

Un(r,t) =0 —1| T
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complex Bessel functionk,, is an associated complex axial
pressure gradient amplitude, amdis the period of the oscil-
lation. In the limit asT grows without bound, this analytical
solution asymptotes to the standard parabolic Hagen—tése
solution for the steady laminar flow in a circular pipe, i.2). (
Alternative formulations of type (4) are available for diffng
physical investigations. Harmonic piston or wall-driveyss
tems vary slightly in their amplitude terms, or by the suttian
term (in the case of wall-driven flow). However, the undentyi
structure is a Bessel function quotient of a non-dimensifsaa
quency. [1] demonstrated that such scaling is immateritien
linear dynamics; save only in the non-dimensional reprasen
tion of the results.

Through modulation of (4) for any frequency harmonieve
note that any time-periodic base-flow can be prescribed as a
Fourier series;

u(t) = z [an-cog2m/T -t) + bpsin(2rm/T -t)],

n
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whereu is the area-average velocity imthrough any cross-
section of the pipe, and

Up = maxu(t).
p = maxu(t)

Now with a length and velocity scale, the governing Reynolds
number is defined as oD
u

Vv

Re= (6)

Linear Stability

The stability analysis problem is solved in primitive vélies.
Starting from (1) it is proposed that2U + U, whereU is the
base flow whos stability is examined andisian infinitesimal
perturbation, of the form
U (r,8,2) = l0zB8ly (1), @)

wherea andf are wave numbers in the axial and azimuthal co-
ordinates respectively. Upon substitution and retainargns
linear in U, the linearized Navier-Stokes equations are ob-
tained:

U =—u-0U—-U-OU-—0Op +vD%, O-uU=0 (8)
All base flows considered in this study are axisymmetric and
invariant along the axis of the pipe. Hente~= {u,v,w} with
u=u(r), v=0 andw = 0. Furthermore, we note that in the
present problem, the base flowTsperiodic, i.,eU(t+T) =
u(t).

As in all incompressible flows the pressure is not an indepen-
dent variable, and as all terms are linear inwe can write this
evolution equation in symbolic form (discarding the prime (
for convenience);

)

where L is a linear operator withT-periodic coefficients
through the influence of the base flow. Correspondingly the st
bility of (9) is a linear temporal Floguet problem [8]. Wrig
the state evolution of u over one period as

otu= L(t)u,

ut+T) = A(T)u(t), (10)

where 4(T) is the system monomodry matrix. We obtain a
Floquet eigenproblem:

AU (1) = wuj (t). (1)

100

Figure 1: Axially invariant, axisymmetrica(= O, 3 = 0) Flo-
quet Multipliers for both NB0O9 ) and (16)¢), showing the
first 3 modes respectively.

Here U/ (t) are phase-specific Floquet modes apdre Floquet
multipliers (which generally occur in complex conjugatérpa
Stability of the problem is assessed from the Floquet mliltip
ers: unstable modes have multipliers that lie outside the un
circle in the complex plane (i.¢u > 1), while stable modes lie
inside (i.e.|y| < 1). A key point about the approach (the ‘time-
stepper’ approach of [16]) is that a system monodromy matrix
A(T) is not explicitly constructed; rather, a Krylov method is
used that is based on repeated application of the statéttoans
operator whos action is obtained by integrating the lirsesti
Navier—Stokes equations forward in time over intefval

Numerical Method

We use a numerical method based on the work of [10]. The
original divergence free basis methodology is presentetkin
tail by [9]. The underlying principle in this solution spaisghe
implicit assertion that the three-dimensional flow can be-co
structed from two velocity components, given that the diver
gence of that field is identically zero. Hence=\{vy,v»}, from
which a full third component may be calculated.

To develop this concept we note that the operator system (9)
can be obtained from the inner product of the operator over a
solution space,

(O, W) g = (LV,W)g, YW, (12)
here,(-,-)q is the inner—product over the spatial dom&nIn
the construction otV we note that v is solenoidal (i.e. diver-
gence free) and the test spaleshould conform for favourable
properties. This is of particular interest singg, W) = (v2,W)
for all solenoidal function$V that vanish over the boundary.
From (1) the pressure gradient is imposedly, which upon
projection presents g§1p,W). Integration by parts of this ex-
pression yields
The productpW of (13) is zero providetlV = 0 at the boundary.
Further more{p,0W) = 0 asOW = 0. Hence, the pressure has
been removed as a variable from the system.

In constructingL we start by defining the matrix evolution
problem in dual and solenoidal vector space,

Bu; = AU, B= <W7V> ) A= <VV7 LV) (14)
hence,

£L=B1Au (15)

By replacing the base-flow condition of with one which
is time-periodic, the only term of (8) affected is the linear
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Figure 2: Contours of axial-velocity for the sub-dominent
eigenmode of the non-axisymmetria & 0.3, B = 3) mode.
Energy concentration towards the centre-line and nedrreal
gions is clear. While the asymptotic influence of this mode is
minimal, its transient effect is considerable.

advection-diffusion term. Hence the system’s time depeoele
is limited to the advancing inner-products,

<VT7W> = <L(t)V07W>7

for any initial solenoidal stategvand final state & The weak-
form of (8) can then be expressed as an integral (over fiijie,

-
u(T):/ B2 [w (02+0U () u(t) +U () Du(t)) |ty dt.

’ (16)
To perform this integration we use a semi-implicit 2nd order
stiff solver, stemming from the numerical differentiatimmmu-
las as implemented in Matlabdsle15s. Hence, the spatial-base
flow retains it's spectral properties with the complexitytbé
matrix being linked to the inversion @&. In this expression the
operator matriceB, W andJ2 are constant. Hence, the precon-
ditioning of B~1 is constructed only once. For the LNS evolu-
tion, we test the implementation of (16) against the letaie
eigenvalues of NB09, correspondingdo= 0, 3 = 0 — which
is alsoReindependent. Excellent agreement is seen, as in fig-
ure 1. The structure of leading modes in the non-axisymmetri
eigenspace have considerable energy concentrated inrttrece
line and near-wall regions, for example in figure 2. Whilestne
modes are clearly sub-dominant, their structure is of aser
when considering the next section, transient analysis.

Optimal Growth

A residual effect of the off-diagonal terms of the advection
diffusion term of (8) is the non-normality of the resultinges-
ator. The non-linear interaction of these terms serve tdywe
solutions that, for short time-scales, can grow algebyaithe
energy growth is governed in the asymptote of time by the-lead
ing operator eigenmodes. However, in the transient tiraer
from an initial perturbation to the final modal saturatior th-
teraction of even decaying modes can produce a net growth in
energy. We seek an initial conditior{@), which under oper-
ation of (9) produces the greatest energy growth over a finite
time 1. As we are dealing with periodic base-flows, we intro-
duce@=1/T as a measure of the phase-point in the flow. The
energy growth is then the norm (inner product) of the veloc-
ity field at any timeg, normalised by the initial energy of the

Figure 3: Optimal Growth: The leading singular value for
Wb =5 (o) through towb= 100 (), intermediaté\b values

are monotonically distributed between the delineated ezurv
Calculations are for a period of oscillation, or base-priof

T = 10. The individuaWbcurves are for the axisymmetric case
(B =0), and over a composite of axial wave numbers, whichever
is largest for the phase-poinp)(

system:

17)
whereZ* is the adjoint of4. Using 4 to evolve the system over
0 — T, the final energy state is7u(0), 4u(0)). It follows from
algebra thatu(0), 2* 4u(0)). This has the effect of locating the
vector U0) which is most amplified bya, which is determined
by the eigenvectors ofl* 4. This is analogous with linear al-
gebra where the eigensystemA¥A is related to the singular
value decomposition @k. The remaining problem is the correct
formulation of the operator adjoingz*, which is distinct from
the tranpose ofd. Having eliminated the pressure using (12),
we condense the adjoint Navier—Stokes equations to terets us
in the construction of an operator:

du* = 0U -u* —U - Ou* —vD2u* (18)

It follows that the adjoint can be symbolically represerasd

ou* = L*(t)u". (19)
Similarly to (10), the adjoint system is a state transitippi@tor
with the physical property of evolving the solution backdsr
through time. Hence, the effect of* is affected through the
divergence-free time-stepper matrix formulation:

0
u*(O):/ B1 [w(—mzmua)-u*(t)—U(t).mu*(t))] U (t) dt.
or
(20)

By concatenating the monomodry operators from an initial
condition y0), forward in time in (16) and then in ‘reverse’
by (20) we terminate with the vectar' (0) which is the effect
of 4*4 operating on (0). The eigenspace ofi*4 is found
through the same Krylov—Arnoldi process of the Floquet sta-
bility analysis. The eigenvalues are the singular vectbtb®
operator4, determined at phase-poirgsSufficiently large sin-
gular values can be associated with large algebraic growth i
the fluid energy, and ultimately to the bypass transitionat m
chanics. This can be true even for globally stable systenes. W
test the implementation of (16)(20) in figure 3 for axisym-
metric and axially-invariant modal structures. Again, the
use the Gauss—Lobatto-Legendre (GLL) spectral-eleméijt (S
time-stepper numerical method of [2] as a comparison. wsol
ing the eigenproblem using the SE (label GLL in figure) method
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